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Abstract.  

The goal of the Palaeoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the 

climate system to changes in different climate forcings and to feedbacks. Through comparison with observations 

of the environmental impacts of these climate changes, or with climate reconstructions based on physical, 5 

chemical or biological records, PMIP also addresses the issue of how well state-of-the-art models simulate 

climate changes. Palaeoclimate states are radically different from those of the recent past documented by the 

instrumental record and thus provide an out-of-sample test of the models used for future climate projections and 

a way to assess whether they have the correct sensitivity to forcings and feedbacks. Five distinctly different 

periods have been selected as focus for the core palaeoclimate experiments that are designed to contribute to the 10 

objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). This manuscript describes 

the motivation for the choice of these periods and the design of the numerical experiments, with a focus upon 

their novel features compared to the experiments performed in previous phases of PMIP and CMIP as well as the 

benefits of common analyses of the models across multiple climate states. It also describes the information 

needed to document each experiment and the model outputs required for analysis and benchmarking. 15 
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1 Introduction 

1.1 Why model paleoclimates? 

Instrumental meteorological and oceanographic data, available for the period extending from the middle of the 

19th century, describe the manner in which Earth’s surface climate has evolved since the beginning of the 

industrial revolution. These data show a global warming of ~0.85°C to have occurred since this time, a warming 5 

that is more intense over land than over the oceans, and more intense at high latitudes compared to the tropics 

(Hartmann et al, 2013, Sutton et al, 2007). This recent climate change has been substantially controlled by the 

increase of atmospheric greenhouse gases due to human activities, amplified by the action of feedbacks 

associated with atmospheric water vapor and clouds (e.g. Dufresne and Bony, 2008), the albedos of snow and 

ice, with changes in the land cover or in ocean properties and circulation (Cubasch et al, 2013). This process-10 

based understanding of the climate system is embedded within the climate models used to project changes in 

future climates. The skill of these climate models is most commonly evaluated in comparison to the present 

climate and climate change since the pre-industrial age (1850 CE). However concentrations of atmospheric 

greenhouse gases are projected to increase significantly during the 21st century, reaching levels well outside the 

range of recent millennia.  Thus, in making future projections, models are operating well outside the conditions 15 

for which they have been validated. The credibility of climate projections needs to be assessed using information 

on longer-term palaeoclimate changes, particularly for intervals when the climate change compared to present 

was as large as the anticipated future change. 

 

We have to look back several million years to find a period of Earth’s history when atmospheric CO2 20 

concentrations were similar to the present day (the mid-Pliocene warm period, 3.2 million years ago) and several 

tens of million years (e.g. the early Eocene, ~55 to 50 million years ago) for much higher levels. During these 

ancient periods, topography, bathymetry, land-ocean distributions and/or ice sheets were different from today, 

and the mechanisms for increasing atmospheric CO2 were likely much slower than anthropogenic fossil fuel 

emissions. However, although these periods are not perfectly analogous to the future, they offer key insight into 25 

climate processes that operate in a higher CO2, warmer world (e.g. Lunt et al, 2010, 2012, Caballero and Huber, 

2010). On the other hand, the main drivers of climatic changes in Earth’s most recent period, the Quaternary (2.5 

million years ago to present), are the astronomical parameters driving the seasonal and latitudinal distribution of 

incoming solar energy, as well as greenhouse gas fluctuations, with levels much lower than present. During this 

period, the Earth’s geography was more similar to today and some of the more rapid climate transitions that took 30 

place occurred on human-relevant timescales (decades to centuries; e.g. Marcott et al, 2014, Steffensen et al, 

2008). By combining several past periods, we can provide a broad picture of the climate response to external 

forcings, and to benefit from the rich resource of paleoclimates and paleoenvironments. 

 

There are numerous palaeoclimate records documenting the evolution of Earth’s climate before instrumental 35 

records (Masson-Delmotte et al, 2013). Some of these records are based on physical and chemical properties of 

the atmosphere, vegetation and ocean; such as oxygen and carbon isotopes, which have been preserved in 

various geological archives such as ice, speleothems or microscopic plankton shells (e.g. Caley et al, 2014, for a 

model-isotopic data comparison). Other records, such as changes in marine and terrestrial floral and faunal 

assemblages and distributions (MARGO Project Members, 2009; Prentice et al., 2000) for changes in and 40 
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surface hydrology and water storage (Kohfeld and Harrison 2000), reflect the impact of climate changes on the 

ambient environment but can be used to reconstruct climate parameters either qualitatively or statistically (e.g. 

MARGO Project Members, 2009; Bartlein et al., 2011). Overall, there is a wealth of palaeoclimatic and 

palaeoenvironmental data showing large variations in the Earth’s climate prior to the industrial era, 

commensurate with the magnitude of projected changes in the future.  5 

 

Replicating the totality of those climate changes with state-of-the-art climate models is a challenge (Braconnot et 

al, 2012, Harrison et al, 2015). It is challenging, for example, to represent the correct amplitude of past climate 

changes such as glacial-interglacial temperature differences (e.g. the temperatures at the Last Glacial Maximum, 

~21,000 years ago, vs. the pre-industrial temperatures, cf. Harrison et al., 2014) or the correct spatial patterns 10 

such as the northward extension of the African monsoon during the mid-Holocene, ~ 6,000 years ago (Perez-

Sanz et al., 2014). Interpreting palaeoenvironmental data can also be challenging, and in particular disentangling 

the relationships between changes in large-scale atmospheric or oceanic circulation, broad-scale regional 

climates and local environmental responses to these changes. This challenge is paralleled by concerns about 

future local or regional climate changes and their impact on the environment. Modelling palaeoclimates is 15 

therefore a means to understand past climate and environmental changes better, using physically based tools, as 

well as a means to evaluate model skill in forecasting the responses to major drivers. 

1.2 The Palaeoclimate Modelling Intercomparison Project (PMIP) 

The Palaeoclimate Modelling Intercomparison Project (PMIP) was established in the 1990’s in order to 

understand the mechanisms of past climate changes, in particular the role of the different climate feedbacks, and 20 

to evaluate how well climate models used for climate projections simulate well-documented climates outside the 

range of present and recent climate variability. To achieve these goals, PMIP has actively fostered paleo-data 

syntheses, model-data comparisons and multi-model analyses. PMIP provides a forum for discussion of 

experimental design and appropriate techniques for comparing model results with palaeoclimatic 

reconstructions. 25 

 

Since its initial phase the evolution of PMIP has closely followed model developments for the Atmospheric 

Model Intercomparison Project (AMIP) and then the Coupled Model Intercomparison project (CMIP). The 

initial focus was on the results from Atmospheric General Circulation Models (PMIP1, Joussaume and Taylor 

1995) and was extended to coupled Atmosphere-Ocean General Circulation Models (AOGCMs) and AOGCMs 30 

including representations of the carbon cycle feedbacks in PMIP2 (Braconnot et al, 2007) and PMIP3 

(Braconnot et al, 2012). Two climatic periods have been a major focus in PMIP since its initial phase: the mid-

Holocene (MH, ~6,000 years ago) and the Last Glacial Maximum (LGM, ~21,000 years ago). The rationale for 

studying the Last Glacial Maximum was to evaluate model performance in a well-documented cold climatic 

extreme and to examine the role of forcings and feedbacks in creating this climate state. The rationale for the 35 

mid-Holocene was to evaluate and analyse the models during a period when the northern hemisphere was 

characterized by enhanced monsoons, extra-tropical continental aridity and much warmer summers. These two 

periods are considered as reference points for assessing the sensitivity of the climate system to changes in 

atmospheric CO2 concentration and orbitally-induced changes in tropical circulation and the monsoons, 

4
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respectively (Braconnot et al 2012, Harrison et al. 2015). Evaluations of the simulations of these two periods 

made in successive phases of PMIP provide a unique overview of the evolution of the ability of climate model to 

reproduce large changes compared to today (Harrison et al. 2013, Flato et al, 2013). 

 

Palaeoclimate experiments were included for the first time in the ensemble of simulations made in during the 5 

fifth phase of CMIP (Taylor et al, 2012). In addition to the MH and LGM simulations described above, transient 

simulations of the millennium prior to the industrial epoch (LM, 850-1850 CE) were also included in CMIP5 

(Schmidt et al, 2011, 2012), to study the mechanisms of decadal to centennial climate variability (natural 

variability vs. impact of solar, volcanic and anthropogenic forcings). Simulations of the LM have used models of 

varying complexity, evolving from energy balance models (e.g. Crowley, 2000), via Earth system models of 10 

intermediate complexity (Goosse et al., 2005), to complex coupled atmosphere –ocean general circulation 

models (AOGCM, e.g. Gonzalez-Rouco et al., 2006) and Earth System Models that include components like the 

carbon cycle (Jungclaus et al., 2010). The focus in CMIP5 has been on coupled model evaluation based on a 

common protocol describing a variety of suitable forcing boundary conditions (Schmidt et al., 2011; 2012). and 

process understanding (e.g. Lehner et al., 2013; Sicre et al., 2013; Jungclaus et al., 2014), including the 15 

assessment of variability modes (e.g. Raible et al., 2014) and comparisons with reconstructions (e.g. Bothe et al., 

2013; Fernandez-Donado et al., 2013). Single-model ensembles of simulations have provided an understanding 

of the importance of internal versus forced variability and the individual forcings when comparing to 

reconstructions (Phipps et al., 2013; Schurer et al., 2014; Otto-Bliesner et al., 2016). Thanks to this formal 

inclusion of the LM, MH and LGM simulations in the CMIP5 exercise, it was possible to compare the 20 

mechanisms causing past and future climate changes in a rigorous way and evaluate of the models used for 

projections under very different climate states from the present one (e.g. Harrison et al, 2013, Harrison et al, 

2015). 

 

In its third phase, PMIP became an umbrella for analyses of other time periods and provided a framework for 25 

analyses across multiple time periods. PlioMIP (Haywood et al., 2010, 2011) coordinates climate model 

experiments for the mid-Pliocene Warm Period (mPWP, ca. 3.3 to 3 million years ago). The mPWP had CO2 

levels similar to today, but vegetation reconstructions (Salzmann et al., 2008) indicate that the area of deserts 

decreased and boreal forests replaced tundra.  Climate model simulations produce global mean surface air 

temperature ranging from +1.9°C and +3.6°C (relative to each model’s pre-industrial control) and an enhanced 30 

hydrological cycle (Haywood et al., 2013), with strengthened monsoons (Zhang et al. 2013). These simulations 

also show that meridional temperature gradients were reduced (due to high latitude warming), which has 

significant implications for the stability of polar ice sheets and sea level in the future (e.g. Miller et al. 2012). 

PMIP3 also saw the initiation of comparison of available simulations and reconstruction for the last interglacial 

period (Lunt et al. 2013) and discussions about the ability of climate models to produce a rate of ice-sheet 35 

melting in agreement with a global sea level at least 5m higher than now (Masson-Delmotte et al., 2013; Dutton 

et al., 2015). First discussions on transient simulations of climate behaviour, focusing on the last interglacial 

period and the last deglaciation (Ivanovic et al, 2015) were also initiated.   

 

5

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-106, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 26 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



A measure of the success of PMIP3 is provided by the number of participating groups (more than 20) and the 

fact that PMIP results were used for ten figures in the last IPCC report (Masson-Delmotte et al. 2013, Flato et al. 

2013). However, the project also identified significant knowledge gaps and areas where progress is needed; 

PMIP4 has been designed to address these.  

1.3 PMIP4 experiments in CMIP6  5 

The design of PMIP4 simulations to be included as part of CMIP6 was built on the recognition that PMIP 

simulations naturally address the key CMIP6 question “How does the Earth System respond to forcing” for 

multiple forcings and in climates states very different from the current or historical climates. Comparisons with 

observations enable us to determine whether the modelled responses are realistic. PMIP also addresses key 

question 2 “What are the origins and consequences of systematic model biases?” PMIP simulations and data-10 

model comparisons will show whether the biases in the present-day simulations are also found in other climate 

states. More importantly, analyses of PMIP simulations will show whether present-day biases have an impact on 

the magnitude of simulated climate changes. Finally, PMIP is also relevant for question 3 “How can we assess 

future climate changes given climate variability, predictability and uncertainties in scenarios?” through 

examination of these questions for documented past climate states and via the use of the last millennium 15 

simulations as reference state for natural variability. 

 

The choice of time periods for palaeoclimate experiments in CMIP6 is based on previous experience in the PMIP 

project. For each target period, there is a quantified understanding of the relevant climate drivers and an 

extensive network and/or synthesis of environmental observations. The five periods proposed for PMIP4-CMIP6 20 

represent climate states with different greenhouse gas concentrations, astronomical parameters, smaller or larger 

ice sheets and modified hydrological cycles (Figure 1), consistent with the need to provide a large sample of the 

climate response to different forcings. While the five periods represent very different climate states, all of them 

cover aspects of the climate system that are relevant to future climate change (Figure 1). The periods are: 

- the millennium before the start of the industrial revolution, from 850 to 1850 CE (past1000) 25 

- the mid-Holocene, 6,000 years ago (midHolocene) 

- the Last Glacial Maximum, 21,000 years ago (lgm) 

- the Last Interglacial, 127,000 years ago (lig127k) 

- the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400) 

All the experiments have been run by several modelling groups, most as formal intercomparisons with a 30 

standardized protocol (e.g. LM, MH, LGM, mPWP). The names of the experiments in PMIP4 simulations 

included in CMIP6 are consistent with the PMIP3-CMIP5 names for the last millennium, mid-Holocene and Last 

Glacial Maximum and consistent with the PlioMIP naming convention for the mid-Pliocene Warm Period 

(Haywood et al, 2016). All the experiments can be run independently and have value for comparison to the 

CMIP6 DECK and historical experiments. We have therefore given them equal priority, Tier 1, within CMIP6 35 

(Table 1). It is not mandatory for groups wishing to take part in PMIP4-CMIP6 to run all five PMIP4-CMIP6 

Tier 1 experiments. It is however mandatory to run at least one of the experiments that were run in previous 

phases of PMIP, i.e. the midHolocene or the lgm. These are considered as “entry cards” for participation in 

PMIP4-CMIP6.   

6
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Figure 1: Context of the PMIP4 experiments (from left to right: MPWP, mid-Pliocene Warm Period; LIG, last 

interglacial; LGM, last glacial maximum; MH, mid-Holocene; LM, last millennium; H, CMIP6 historical simulation): 

(a)-(d) insolation anomalies (differences from 1950 CE), for July at 65°N, calculated using the programs of Laskar et 

al. (2004, panel (a)) and Berger (1978, panels (b)-(d)); (e) δ
18

O (magenta, Lisiecki and Raymo, 2005, scale at left), and 

sea level (blue line, Rohling et al., 2014; blue shading, a density plot of eleven mid-Pliocene sea level estimates 5 
(Dowsett and Cronin 1990; Wardlaw and Quinn, 1991; Krantz, 1991; Raymo et al., 2009; Dwyer and Chandler, 2009; 

Naish and Wilson, 2009; Masson-Delmotte et al., 2013; Rohling et al., 2014; Dowsett et al., 2016) scale at right); (f) 

and (g) δ
18

O (magenta, Lisiecki and Raymo, 2005, δ
18

O scale at left), and sea level (blue dots, with light-blue 2.5, 25, 

75 and 97.5 percentile bootstrap confidence intervals,  Spratt and Lisiecki, 2015; blue rectangle, LIG high-stand 

range, Dutton et al., 2015; dark blue lines, Lambeck et al., 2014, sea-level scale at right on panel (g)), (h) sea level 10 
(Kopp, et al., 2016, scale at right); (i) CO2 for the interval 3.0-3.3 Ma shown as a density plot of eight mid-Pliocene 

estimates (Raymo et al., 1996; Stap et al., 2016; Pagani et al., 2010; Seki et al., 2010; Tripati et al., 2009; Bartoli et al., 

2011; Seki et al., 2010; Kurschner et al., 1996); (j) and (k) CO2 measurements (Bereiter et al., 2015, scale at left); (l) 

CO2 measurements (Schmidt et al, 2011, scale at right); (m) and (n) CH4 measurements (Loulergue et al., 2008, scale 

at left); (o) CH4 measurements (Schmidt et al, 2011, scale at right); (p) volcanic radiative forcing (Schmidt et al., 2012, 15 
scale at right); (q) total solar irradiance (Schmidt et al., 2012, scale at right). 

 

Table 1: Characteristics, purpose and CMIP6 priority of the five PMIP4-CMIP6 experiments 

 

Intercomparison of simulated responses to specific drivers across models are interesting as sensitivity 20 

experiments, but the true power of PMIP is the connection to the observations which allows an assessment of 

model skill to be made. As the choice of these periods and of the experimental design was also motivated by the 

fact that model-observational comparisons are as essential to the project as the comparisons across the model 

ensemble, it is important to assess all the issues that might make those comparisons difficult. Uncertainties in the 

observations, or perhaps more broadly, in the inferences from those observations, are a key part of PMIP 25 

analyses, as is the structural uncertainty across the model responses. Both of these factors have been part of the 

PMIP approach from the beginning. What has only recently become more apparent is the importance of 

understanding the uncertainty in the drivers themselves. This encompasses time-uncertainty for reconstructions 

(i.e. what are the appropriate orbital parameters to use for the last interglacial or mid-Pliocene?) as well as 

structural uncertainty in the boundary conditions applied (e.g. in the continental reconstructions, ice sheet height 30 

and extent, vegetation cover), or the transient forcings (for instance in the last millennium simulations for solar, 

volcanic aerosol or land use/land cover change). Different reconstructions of these aspects have clear differences 

that can impact assessment of model skill. Attitudes to this do vary across the author team, and compromises 

have had to be made in the experimental designs in the lgm and past1000 experiments, alternative forcings are 

thus possible.  35 

 

In section 2, we give more background on these periods and the associated forcings and boundary conditions. 

The experimental set-up of the experiments is described in section 3. The analysis plan is outlined in Section 4. 

A short conclusion is given in section 5. 

2. The PMIP4-CMIP6 simulations 40 

2.1 PMIP4-CMIP6 entry cards: the mid-Holocene (midHolocene) and last glacial maximum (lgm) 

As discussed above, the MH and the LGM provide examples of strongly contrasted climate states (Figure 1, 

Table 1). There are extensive syntheses of marine and terrestrial data for both intervals, documenting 

environmental responses to changing climate. The MH provides an opportunity to examine the response to 

7
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orbitally-induced changes in the seasonal and latitudinal distribution of insolation. The LGM provides an 

opportunity to examine the impact of changes in ice sheets, land-sea distribution and greenhouse gases on 

climate. The LGM is particularly relevant because the forcing and temperature response was as large as 

(although of opposite sign) to that projected for the end of the 21st century. Both periods constitute test cases for 

our understanding of mechanisms of climate change, such as the interplay between circulation changes and 5 

radiation/cloud changes, the respective strengths of feedbacks from different components of the climate system, 

and for our understanding of the connections between global and regional climate changes. Because these 

periods have been studied in earlier phases of PMIP, they provide the opportunity to evaluate whether increased 

model resolution and complexity has led to improvement in the representation of circulation patterns and in the 

fidelity of regional climate changes. 10 

 

Evaluation of the PMIP3-CMIP5 MH and LGM experiments has demonstrated that climate models simulate 

changes in large-scale features of climate that are governed by the energy and water balance reasonably well, 

including changes in land-sea contrast (Figure 2a) and high-latitude amplification of temperature changes  

(Izumi et al., 2013; Izumi et al., 2015). They also simulate the scaling of precipitation changes with respect to 15 

temperature changes at a hemispheric scale realistically (Li et al., 2013). Thus, evaluation of the PMIP3-CMIP5 

MH and LGM simulations confirms that the relationships between large-scale patterns of temperature and 

precipitation change in future projections are believable (Harrison et al., 2015). However, the PMIP3-CMIP5 

simulations of MH and LGM climates show only moderate skill in predicting observed patterns of climate 

change overall (Hargreaves et al., 2013; Hargreaves and Annan, 2014; Harrison et al., 2014; Harrison et al., 20 

2015) and this arises because of persistent problems in simulating regional climates (e.g. Mauri et al., 2014; 

Perez-Sanz et al., 2014; Harrison et al., 2015). State-of-the-art models still cannot reproduce the northward 

penetration of the African monsoon in response to MH orbital forcing (Figure 2b, Perez-Sanz et al., 2014, 

Pausata et al, 2016), for example. Both inadequate representation of feedbacks and model biases could contribute 

to this mismatch (see e.g. Zheng and Braconnot, 2013) but are unlikely to be sufficient to reconcile the PMIP3-25 

CMIP5 simulations with observations.  

 

Systematic biases in the simulation of regional climates means that state-of-the-art models are generally better at 

simulating mean values of any climate variable than at simulating the spatial variability or the geographical 

patterning in that variable (Harrison et al., 2014). Although the benchmarking of the PMIP3-CMIP5 MH and 30 

LGM experiments shows that some models consistently perform better than others (Harrison et al., 2014), better 

performance in palaeo-simulations is not consistently related to better performance under modern conditions 

(Harrison et al., 2015). The ability to simulate modern climate regimes and processes does not guarantee that a 

model will be good at simulating climate changes, emphasising the importance of testing models against the 

palaeorecord to increase confidence in projections of future climate (Braconnot et al., 2012; Hargreaves and 35 

Annan, 2014; Schmidt et al., 2014). 

Figure 2 : Data-model comparisons in PMIP2 and CMIP5/PMIP3:  (a) Land-ocean contrast in past, present and 

projected future climates.  The black dots are the simulated long-term mean differences (experiment – piControl) in 

the relative warming/cooling over global land and global ocean.  The red crosses show simulated changes where the 

model output has been sampled only at the locations for which there are temperature reconstructions for the lgm, 40 
midHolocene and historical (post-1850 CE) CMIP5 simulations.  Area averages of palaeoclimate data are shown by 

bold blue crosses, with reconstruction uncertainties indicated by the finer lines.  The regression line (magenta) shows 

that land-ocean contrasts are maintained across different climate states and are also consistent with palaeoclimatic 

8
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data.  (b) Boxplots of reconstructions based on fossil-pollen data (gray, Bartlein et al. 2011) and simulations (at the 

locations of the data) for the difference in mean annual precipitation (MAP) for the mid-Holocene (relative to present) 

in northern Africa (20°W-30°E; 5-30°N).  The comparison shows that although all models simulated wetter-that-

present conditions in northern Africa for the mid-Holocene, they systematically underestimated the magnitude of the 

precipitation difference.  5 

 

There are small differences in the boundary conditions to be used for PMIP4-CMIP6 compared to those used in 

PMIP3. In PMIP3, the MH CO2 concentration was prescribed to be the same as in the pre-industrial control 

simulation because the focus was on testing the impact of the insolation forcing on meridional climate gradients 

and seasonality. Realistic values of CO2 concentration and other trace gases will be used in PMIP4-CMIP6 10 

(Table 2). This will allow the midHolocene experiment to be used as the initial state for transient simulations of 

the late Holocene planned as part of PMIP4, and ensure consistency of forcing between the midHolocene 

PMIP4-CMIP6 snapshot experiment and the transient runs. Similarly, a single ice sheet reconstruction was used 

in the PMIP3 LGM experiments (Abe-Ouchi et al., 2015). There is some uncertainty about the form of the ice 

sheets at the Last Glacial Maximum, and thus the protocol for the PMIP4-CMIP6 lgm simulations includes a 15 

choice between two new reconstructions based on somewhat different approaches: ICE-6G_C (Argus et al., 

2014; Peltier et al., 2015) and GLAC-1D (Tarasov et al., 2012; Briggs et al., 2014; Ivanovic et al, 2015). Groups 

wishing to use the lgm equilibrium experiment to initialise PMIP4 transient simulations of the last deglaciation 

(Ivanovic et al, 2015) must use either ICE-6G_C or GLAC-1D because these are consistent with the ice sheet 

and meltwater forcings provided for the transient experiments. The PMIP3 ice sheet can be used otherwise. The 20 

impact of these different ice-sheet forcings will be a focus for sensitivity experiments in PMIP4. There are 

uncertainties about other boundary conditions for the midHolocene and lgm experiments, including dust and 

vegetation (section 3.5), and these will also be investigated as part of the analysis of the entry-card simulations. 

2.2 The last millennium (past1000) 

The millennium before the industrial era provides a well-documented (e.g. PAGES2k-PMIP3 group, 2015) 25 

period of multi-decadal to multi-centennial changes in climate, with contrasting periods such as the Medieval 

Climate Optimum and the Little Ice Age. This interval was characterised by variations in solar, volcanic and 

orbital forcings (Figure 1). Investigating the response to (mainly) natural forcing under climatic background 

conditions not too different from today is crucial for an improved understanding of climate variability, 

circulation, and regional connectivity. This interval also provides a context for earlier anthropogenic impacts 30 

(e.g. land-use changes) and the current warming by increased greenhouse gas concentrations and helps constrain 

uncertainty in the future climate response to a sustained anthropogenic impact.  

 

The PMIP3-CMIP5 LM simulations (Figure 3) provided an assessment of climate variability on decadal and 

longer scales and information on predictability under forced and unforced conditions. The importance of forced 35 

variability on multidecadal to centennial time scales was highlighted by comparing spectra from LM simulations 

with those from control experiments (Fernandez-Donado et al., 2013). Other studies focused on the temperature 

difference between the warmest and coldest centennial or multi-centennial periods and the relation to changes in 

external forcing, in particular variations in solar irradiance (Fernandez-Donado et al., 2013; Hind and Moberg, 

2013). Single-model ensembles have provided improved understanding of the importance of internal versus 40 

forced variability and the individual forcings when comparing to reconstructions at both global and regional 
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scales (Phipps et al., 2013; Schurer et al., 2014; Man et al., 2012; Man et al., 2014; Man and Zhou, 2014; Otto-

Bliesner et al., 2016). The LM simulations show relatively good agreement with regional climate reconstructions 

for the northern hemisphere, but less agreement with southern hemisphere records. The simulations exhibit more 

regional coherence than shown by southern hemisphere records, though it is not clear whether this is due to 

deficiencies in the southern hemisphere records, or poor representation of internal variability and/or an 5 

overestimation of the forced response in the simulations.  

 

Figure 3 : Color lines: temperatures anomalies (w.r.t. the 1500-1850 CE average) simulated by PMIP3-CMIP5 models 

for the last millennium and historical periods, averaged for the northern (l.h.s) and southern (r.h.s) hemisphere. Grey 

shading: uncertainty envelope of available reconstructions. All series are filtered using a 31-point moving average 10 
filter. Adapted from Fernandez-Donado, 2015. 

 

The PMIP4-CMIP6 past1000 simulations will be based on experience gained in PMIP3-CMIP5, in which more 

than a dozen modelling groups participated and a total of 15 past1000 experiments where stored in the ESGF 

database. The PMIP4-CMIP6 past1000 simulations build on the DECK experiments, in particular the pre-15 

industrial control (piControl) simulation as unforced reference, and the historical simulations (Eyring et al., 

2015). Moreover, past1000 simulations provide initial conditions for historical simulations starting in the 19th 

century that are considered superior to the piControl state as it includes integrated information from the forcing 

history (e.g. large volcanic eruptions in the early 19th century).  The PMIP4-CMIP6 past 1000 simulation will 

benefit from a new, more comprehensive reconstruction of volcanic forcing (Sigl et al., 2015) and an 20 

experimental protocol that ensures a more continuous transition from the pre-industrial past to the future. 

Higher-resolution simulations will allow a greater range of regional processes, such as the role of storm-tracks 

and blocking on regional precipitation, to be analyzed. 

 

2.3 The last interglacial (lig127k) 25 

The Last Interglacial (ca 130-115 ka) was characterized by a northern hemisphere insolation seasonal cycle even 

larger than for the mid-Holocene (Figure 1, Table 1), resulting in a strong polar amplification of temperatures 

and reduced Arctic sea ice, and global sea level was at least 5 m higher than now for at least several thousand 

years (Masson-Delmotte et al., 2013; Dutton et al., 2015). Both the Greenland and Antarctic ice sheets 

contributed to this sea level rise, making it an important period for testing our knowledge of climate-ice sheet 30 

interactions in warm climates. There are more quantitative climate reconstructions available for the Last 

Interglacial than earlier interglacials, despite challenges in establishing the reliable chronologies, making it 

feasible to assess regional climate changes.   

 

Climate model simulations of the Last Interglacial, reviewed and assessed in the AR5, varied in their forcings 35 

and were not necessarily made with the same model/same resolution as the CMIP5 future projections. 

Quantitative reconstructions of annual surface temperature change were available for comparison to these 

simulations (Figure 4) though with the caveat that the warmest phases were not necessarily globally synchronous 

(Masson-Delmotte et al., 2013). Nevertheless, comparison exercises showed large-scale discrepancies between 

simulations and reconstructions, particularly in regard to temperature trends over Greenland and the Southern 40 

Ocean (Bakker et al., 2013, Lunt et al, 2013).  
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Figure 4: Figure 5.6 from Chapter 5 of the IPCC AR5 WGI report (Masson-Delmotte et al., 2013, page 

408). Changes in surface temperature for the Last Interglacial (LIG) as reconstructed from data and 

simulated by an ensemble of climate model experiments in response to orbital and well-mixed greenhouse 

gas (WMGHG) forcings. (a) Proxy data syntheses of annual surface temperature anomalies as published 5 

by Turney and Jones (2010) and McKay et al. (2011). McKay et al., (2011) calculated an annual anomaly 

for each record as the average sea surface temperature (SST) of the 5-kyr period centred on the warmest 

temperature between 135 ka and 118 ka and then subtracting the average SST of the late Holocene (last 5 

kyr). Turney and Jones (2010) calculated the annual temperature anomalies relative to 1961–1990 by 

averaging the LIG temperature estimates across the isotopic plateau in the marine and ice records and the 10 

period of maximum warmth in the terrestrial records (assuming globally synchronous terrestrial 

warmth). (b) Multi-model average of annual surface air temperature anomalies simulated for the LIG 

computed with respect to preindustrial. The results for the LIG are obtained from 16 simulations for 128 

to 125 ka conducted by 13 modelling groups (Lunt et al., 2013). (c) Seasonal SST anomalies. Multi-model 

zonal averages are shown as solid line with shaded bands indicating 2 standard deviations. Plotted values 15 

are the respective seasonal multi-mean global average. Symbols are individual proxy records of seasonal 

SST anomalies from McKay et al. (2011). (d) Seasonal terrestrial surface temperature anomalies (SAT). 

As in (c) but with symbols representing terrestrial proxy records as compiled from published literature 

(Table 5.A.5). Observed seasonal terrestrial anomalies larger than 10°C or less than –6°C are not shown. 

In (c) and (d) JJA denotes June – July – August and DJF December – January – February, respectively. 20 

 

The PMIP4-CMIP6 lig127k experiment will help to determine the interplay of warmer atmospheric and oceanic 

temperatures, changed precipitation, and changed surface energy balance on ice sheet thermodynamics and 

dynamics (Table 1). The major changes in the experimental protocol for lig127k, compared to the pre-industrial 

DECK experiment, are changes in astronomical parameters and greenhouse gases (Table 2; Otto-Bliesner et al, 25 

2016). Analyses of these simulations will benefit from the concerted effort by the paleodata community to 

provide a spatial-temporal picture of last interglacial temperature change (Capron et al., 2014) as well as phasing 

of the timing of the contributions of Greenland and Antarctica to the global sea level (Winsor et al., 2012; Steig 

et al., 2015). Regional responses of tropical hydroclimate and of polar sea ice can be assessed and compared to 

the mid-Holocene. Outputs from the lig127k experiment will be used by ISMIP6 to force standalone ice sheet 30 

experiments (lastIntergacialforcedism). The lig127k experiment will also be the starting point of a transient 

experiment covering the interglacial to be run within PMIP4. 

2.4 The mid-Pliocene Warm Period (midPliocene-eoi400) 

The Pliocene epoch was the last time in Earth history when atmospheric CO2 concentrations approached modern 

values (~400 ppmv) whilst at the same time retaining a near modern continental configuration (Figure 1, Table 1, 35 

Erreur ! Source du renvoi introuvable.). The IPCC 5th Assessment report chapter 5 (Masson-Delmotte et al., 

2013) states that model–data comparisons for the Pliocene provide high confidence that mean surface 

temperature was warmer than pre-industrial (Dowsett et al., 2012; Haywood et al., 2013). However, as was the 

case for the Last Interglacial, the mid-Pliocene simulations were not always derived from the same model at the 

same resolution as the CMIP5 future projections. 40 

 

Figure 5: Figure 1 in Box 5.1 from Chapter 5 of the IPCC AR5 WGI report (Masson-Delmotte et al., 2013, 

page 397). Comparison of data and multi-model mean (MMM) simulations, for four periods of time, 

showing (a) sea surface temperature (SST) anomalies, (b) zonally averaged SST anomalies, (c) zonally 

averaged global (green) and land (grey) surface air temperature (SAT) anomalies and (d) land SAT 45 
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anomalies. The time periods are 2081–2100 for the Representative Concentration Pathway (RCP) 8.5 (top 

row), Last Glacial Maximum (LGM, second row), mid-Pliocene Warm Period (MPWP, third row) and 

Early Eocene Climatic Optimum (EECO, bottom row). Model temperature anomalies are calculated 

relative to the pre-industrial value of each model in the ensemble prior to calculating the MMM anomaly 

(a, d; colour shading). Zonal MMM gradients (b, c) are plotted with a shaded band indicating 2 standard 5 

deviations. Site specific temperature anomalies estimated from proxy data are calculated relative to 

present site temperatures and are plotted (a, d) using the same colour scale as the model data, and a 

circle-size scaled to estimates of confidence. Proxy data compilations for the LGM are from Multiproxy 

Approach for the Reconstruction of the Glacial Ocean surface (MARGO) Project Members (2009) and 

Bartlein et al. (2011), for the MPWP are from Dowsett et al. (2012), Salzmann et al. (2008) and Haywood 10 

et al. (2013) and for the EECO are from Hollis et al. (2012) and Lunt et al. (2012). Model ensemble 

simulations for 2081–2100 are from the CMIP5 ensemble using RCP 8.5, for the LGM are seven 

Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) and Coupled Model Intercomparison 

Project Phase 5 (CMIP5) models, for the Pliocene are from Haywood et al., (2013), and for the EECO are 

after Lunt et al. (2012). [ Note: permission has been sought to use the third line of this figure only (i.e. the 15 

MPWP results). Until this permission is received, we follow the IPCC rules for using the figures from the 

fifth assessment report. ] 

 

The PMIP4-CMIP6 midPliocene-eoi400 experiment is designed to understand the long term response of the 

climate system to a near modern concentration of atmospheric CO2 (longer term climate sensitivity or Earth 20 

System Sensitivity), and to understand the response of ocean circulation, Arctic sea-ice, modes of climate 

variability (e.g. El Niño Southern Oscillation), as well as the global response in the hydrological cycle and 

regional changes in monsoon systems (Table 1). Boundary conditions are provided by the US Geological Survey 

Pliocene Research and Synoptic Mapping Project (PRISM4: Dowsett et al. 2016). These include required 

modifications to global ice distributions, topography/bathymetry, vegetation and CO2 (Table 2, Section 3). The 25 

simulation has societal relevance because of its potential to inform policy makers on required emission reduction 

scenarios designed to prevent an increase in global annual mean temperatures by more than 2 to 3 °C beyond 

2100 AD.  

3. Experimental set up and model configuration  

The modified forcings and boundary conditions for each PMIP4-CMIP6 palaeoclimate simulation are 30 

summarised in Table 2. The complete details of the experimental protocols are given in a series of companion 

papers: Otto-Bliesner et al for the midHolocene and lig127ka experiments, Kageyama et al for the lgm, 

Jungclaus et al for the past1000 and Haywood et al (2016) for the midPliocene-eoi400 experiment. These papers 

also explain how the boundary conditions for each period have been built and constitute key references for the 

experimental protocol for each of the PMIP4-CMIP6 simulations. Here we provide guidelines that are common 35 

to all of the experiments, focusing particularly on the implementation of the boundary conditions where there is a 

need to ensure consistency between CMIP6 and PMIP4 experiments. 

3.1 Model version and set-up  

The climate models taking part in CMIP6 are very diverse: some representing the solely physics of the climate 

system; some including the carbon cycle and other biogeochemical cycles; some even including interactive 40 

natural vegetation and/or interactive dust cycle/aerosols. It is mandatory that the model versions used for the 

PMIP4-CMIP6 experiments are the exactly the same as for the other CMIP6 experiments, in particular the 
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DECK and historical simulations. Except for the past1000 simulation, all the other PMIP4-CMIP6 simulations 

are equilibrium experiments, in which the boundary conditions and forcings are constant from one year to 

another. The experimental set-up for each simulation is based on the DECK pre-industrial experiment (Eyring et 

al, 2015); the forcings and boundary conditions for the DECK pre-industrial experiments are modified to obtain 

the forcings and boundary conditions necessary for each PMIP4-CMIP6 palaeoclimate experiment (Table 2). No 5 

additional interactive component (such as vegetation or dust) should be included in the model unless it is already 

included in the DECK version because such changes would affect the global energetics (Braconnot and 

Kageyama, 2015) and therefore prevent rigorous analyses integrating across multiple time periods or MIPs 

(sections 4.2 and 4.3).  

 10 

Table 2: summary of changes in boundary conditions w.r.t. piControl for each PMIP4-CMIP6 experiment 

 

For each experiment, the greenhouse gases and astronomical parameters should be modified from the DECK 

piControl experiment according to Table 2. In the following sections, we give more detail on the implementation 

of the boundary conditions which require specific attention to ensure consistency withing CMIP6 and PMIP4. 15 

3.2 Implementation of ice sheets  

The mid-Pliocene and Last Glacial Maximum experiments require changes in ice sheets. This implies changes in 

ice sheet height, land surface type, seas level and hence land-sea mask, and ocean bathymetry (Figure 6). These 

changes in boundary conditions should be implemented as follows: 

1. The land-sea mask should be implemented in the ocean and atmosphere/land surface models. This step 20 

is optional for the midPlioceneEoi400 experiment, but mandatory for the lgm. It is important to check 

the newly glaciated areas in the lgm experiment to ensure that grid cells under the grounded ice sheets 

(e.g. in the Hudson Bay area and over present-day Barents-Kara seas) are not specified as ocean cells. 

2. The ice sheet mask should be implemented in the atmosphere/land surface model. 

3. Changes in topography should be implemented by adding the anomaly in topography provided on the 25 

PMIP4 and PlioMIP web sites (http://pmip4.lsce.ipsl.fr and  

http://geology.er.usgs.gov/egpsc/prism/7_pliomip2.html) web sites to the topography used for the 

piControl simulation. This may mean re-computing parameters based on topography, such as those used 

in gravity wave drag parameterisations, because of the difference in surface roughness between ice 

sheets and non-glaciated terrain. 30 

4. Changes in ocean bathymetry should be implemented, if this is feasible for a given model, by using the 

more detailed bathymetry provided with the ice-sheet reconstructions. For the midPlioceneEoi400 

experiment the alternative is to leave bathymetry unchanged (i.e. the same as in the PiControl). The 

alternative for the lgm experiment is to lower mean sea level by the amount consistent with the ice-sheet 

reconstruction used. If the ocean model includes a parameterization of the impact of tides on ocean 35 

circulation, it is recommended to re-compute the parameters as a function of the new bathymetry and 

land-sea mask. 

5. River pathways and basins should be adjusted so that fresh water is conserved at the Earth's surface and 

rivers reach the ocean. This is particularly important given the large lowering of sea level in the lgm 

13

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-106, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 26 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



experiment. River routing files will be provided for the lgm on the PMIP web site 

(http://pmip4.lsce.ipsl.fr), and these indicate how to change the course of rivers in regions covered by 

ice sheets. For the midPlioceneEoi400 experiment, rivers pathways remain unchanged from modern 

except where there are new land grid cells when rivers should be routed to the nearest ocean grid box or 

most appropriate river outflow point. 5 

 

Figure 6: Changes in boundary conditions related to changes in ice sheets for the midPliocene-eoi400 (top) and lgm 

(middle: ICE-6G_C and bottom: GLAC-1D) experiments. Coastlines for palaeo-period shown as brown contours. Ice 

sheet boundaries for each period shown as red contour. Bright shading: changes in altitude over regions covered by 

ice sheets during the considered palaeo-period. Faded shading: changes in altitude over ice-free regions. 10 

 

Some ice-sheet related changes must be implemented in the initial conditions: 

- This atmospheric mass must be the same as today. For some models, this means that the initial surface 

pressure field has to be adjusted to the change in surface elevation.  

- The mean ocean salinity has to be increased by +1 PSU everywhere at the beginning of the lgm 15 

simulation, to account for the lowering of sea level. Alkalinity also needs to be adjusted if an ocean 

biogeochemistry model is used. 

3.3 Vegetation and land use 

Palaeoenvironmental records show that natural vegetation patterns during each of the PMIP4-CMIP6 period 

were different from today. However, in order to ensure comparability between past, present and future climate 20 

simulations, the PMIP4-CMIP6 palaeoclimate simulations should follow the same protocol as the DECK and 

historical simulations. If the DECK and historical simulations use dynamic vegetation, then the PMIP4-CMIP6 

palaeoclimate simulations should also. If the DECK and historical simulations use prescribed modern vegetation, 

then modern vegetation should be prescribed in the PMIP4-CMIP6 palaeoclimate simulations. The only 

exception to this is the midPlioceneEoi400 experiment, where models which use prescribed modern vegetation 25 

in the DECK and historical simulations should use mid-Pliocene vegetation (Haywood et al., 2016) for their 

Pliocene simulation. Simulations to examine the impact of vegetation changes during other periods would be of 

interest, and could be evaluated using palaeodata. These could be made using prescribed vegetation changes, by 

running a model off line to compute vegetation patterns compatible with a past climate state, or by running 

additional simulations with a non-standard version of the model with dynamic vegetation. Sensitivity 30 

experiments such as these will likely be run within PMIP4 but are not part of the PMIP4- CMIP6 experiments. 

 

Land-use changes have to be implemented for the past1000 simulation in the same manner as for the historical 

simulation (Hurtt et al., in prep.), using the land-use forcing provided by the Land Use Model Intercomparison 

Project and the CMIP6 Land Use Harmonization dataset (https://cmip.ucar.edu/lumip; Hurtt et al., in prep.; 35 

Jungclaus et al., in prep.). This data set is derived from the HYDE3.2 (Klein Goldewijk et al., in prep.) estimates 

of the area of cropland, managed pasture, rangeland, urban, and irrigated land. Different crop types are treated 

separately and estimates of wood harvest are also provided. 
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3.4 Natural aerosols 

3.4.1 Mineral Dust 

Natural aerosols show large variations on glacial-interglacial time scales, with glacial climates having higher 

dust loadings than interglacial climates (Kohfeld and Harrison, 2001; Maher et al, 2010). Dust emissions from 

northern Africa were significantly reduced during the MH (McGee et al., 2013). As is the case with vegetation, 5 

the treatment of dust in the midHolocene and lgm simulations should parallel the treatment in the piControl. 

However, some of the models in CMIP6 include representations of interactive dust. For those models, maps of 

soil erodibility, accounting for changes in the extension of possible dust sources, will be provided from recent 

simulations (Albani et al, 2014, 2015; Hopcroft et al, 2015) for the pre-industrial, mid-Holocene and the LGM 

periods. Dust anomalies/ratios compared to the pre-industrial background should be used, for consistency with 10 

the DECK piControl simulation. As there have been instances of runaway climate-vegetation-dust feedback, 

leading to unrealistically cold LGM climates (Hopcroft and Valdes, 2015), it is advisable to test model behaviour 

before running the lgm simulation. To allow experiments with prescribed dust changes, a three-dimensional 

monthly climatology of dust atmospheric mass concentrations will be provided for the pre-industrial, MH, and 

LGM based on two different modeling studies (Albani et al., 2014, 2015, 2016, Hopcroft et al., 2015). 15 

Additional dust-related fields (dust emission flux, dust load, dust aerosol optical thickness, short- and long-wave, 

surface and top of the atmosphere dust radiative forcing) will also be available from these simulations. 

Implementation should follow the same procedure as for the historical run (Albani et al, 2014, 2015). Since dust 

plays an important role in ocean biogeochemistry (e.g. Kohfeld et al, 2005), three dust maps will be provided. 

Two of these are consistent with the climatologies of dust atmospheric mass concentrations; the other is 20 

primarily derived from observations (Lambert et al., 2015). 

 

Figure 7: Maps of dust deposition (g m-2 a-1) simulated with the Community Earth System Model for the a. PI 

(Albani et al., 2016), b. Mid-Holocene (Albani et al., 2015), and c. LGM (Albani et al., 2014). Maps of dust deposition 

(g m-2 a-1) for the LGM d. simulated with the Hadley Centre Global Environment Model 2-Atmosphere (Hopcroft et 25 
al, 2015), and reconstructed from a global interpolation of paleodust data (Lambert et al., 2015).   

3.4.2 Volcanoes and stratospheric aerosols  

The past1000 experiment includes changes in volcanic aerosols, although these are not included in other PMIP4-

CMIP6 experiments. The estimates of sulphur injections are derived from a recent compilation of synchronized 

Antarctic and Arctic ice core records, which provides an improved history of the timing and magnitude of 30 

eruptions over the last 2500 years (Sigl et al. 2013). Ice core sulphate fluxes are translated into a time series of 

stratospheric sulphur injection via linear scaling (similar to Gao et al., 2008) and by matching the ice-core 

signals to historically confirmed eruptions. Unidentified eruptions are assigned as tropical when there are 

matching northern and southern hemisphere signals, signals only registered in the northern or southern 

hemisphere are considered to be extratropical in origin. Modeling groups using interactive aerosol modules and 35 

sulphur injections in their historical simulations will follow the same method for the past1000 experiment and 

use sulphur injection estimates directly. However, estimates of aerosol radiative properties as a function of 

latitude, height, and wavelength will be provided for other modelling groups using the Easy Volcanic Aerosol 

(EVA) module (Toohey et al., 2016), which is a parameterized three-box model of stratospheric transport that 

uses simple scaling relationships to derive mid-visible aerosol optical depth (AOD) and aerosol effective radius 40 
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(reff) from stratospheric sulphate mass. EVA uses model-specific information (grid, wave-length distribution) to 

produce annual volcanic aerosol forcing files for wavelength dependent aerosol extinction (EXT), single 

scattering albedo (SSA) and scattering asymmetry factor (ASY) as function of time, latitude, height and wave 

length. There are uncertainties associated with this approach, so additional sensitivity experiments to assess the 

impacts of these uncertainties on the past1000 simulations will be made as part of the PMIP4 (see Jungclaus et 5 

al., in prep.). 

3.5 Spin-up and duration of experiments  

The data stored in the CMIP6 database should be representative of the equilibrium climates of the mid-Holocene, 

Last Glacial Maximum, Last Interglacial and mid-Pliocene Warm period, and of the transient evolution of 

climate between 850-1850 CE for the past1000 simulations. Spin-up procedures will differ for different models 10 

and time periods, but the spin up should be long enough to avoid significant drift in the analysed data. Initial 

conditions can be taken from an existing simulation. A minimum of 100 years output is required for the 

equilibrium simulations but, given the increasing interest in analysing multi-decadal variability (e.g. Wittenberg, 

2009), modelling groups are encouraged to provide outputs for a longer period of 500 years.  

3.6 Documentation 15 

Detailed documentation of the PMIP4-CMIP6 simulations is required. This should include: 

- a description of the model and its components;  

- information about the boundary conditions used, particularly when alternatives are allowed (Table 2);  

- information on the implementation of boundary conditions and forcings. Figures showing the land-sea 

mask, land-ice mask, and topography as implemented in a given model are useful for the lgm and 20 

midPliocene-eoi400 experiments, while figures showing insolation are particularly important for the 

midHolocene and lig127k experiments. Check lists for the implementation of simulations are provided 

in the PMIP4 papers providing detailed information for each experiment (midHolocene: Otto-Bliesner 

et al, 2016; lgm; Kageyama et al, 2016; past1000: Jungclaus et al, 2016; lig127k: Otto-Bliesner et al, 

2016;  midPliocene-eoi400: Haywood et al, 2016);  25 

- information about the initial conditions and spin-up technique used. A measure of the changes in key 

variables (e.g. globally averaged 2m temperatures, sea-surface temperatures, bottom ocean 

temperatures, top-of-the-atmopshere radiative fluxes) should be provided in order to assess remaining 

drift.  

Documentation should be provided via the ESDOC website and tools provided by CMIP6 (http://es-doc.org/) to 30 

facilitate communication with other CMIP6 MIPs. This documentation should also be provided on the PMIP4 

website to facilitate linkages with non-CMIP6 simulations to be carried out in PMIP4. A PMIP4 special issue, 

shared between Geoscientific Model Development and Climate of the Past, will provide a further opportunity for 

modelling groups to document specific aspects of their simulations. 
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4. Plan of Analyses  

The compatibility of past, historical and future climate simulations, through the use of seamless forcings and 

identical model versions, will allow benchmarking based on extensive syntheses of palaeoclimate data to be 

applied to models used for future projections. Planned analyses of the PMIP4-CMIP6 palaeoclimate simulations 

will make full use of the fact that modelling groups must also run the piControl, historical and abrupt4xCO2 5 

DECK experiments, by focusing on analyses that link past and future climates. The piControl and the historical 

simulations provide two alternative reference states for palaeoclimate simulations. Existing palaeoclimate 

reconstructions have used different modern reference states, and this has been shown to have an impact on the 

magnitude of reconstructed changes (e.g. Hessler et al., 2014). Comparisons of the simulated piControl and the 

historical climates will provide a way of quantifying this source of reconstruction uncertainty. Furthermore, 10 

links established with other CMIP6 MIPs (Section 4.3 and Table 3) will make it possible to capitalise on their 

analyses to improve understanding of specific aspects past climates and vice versa. 

 

4.2 Making use of PMIP4-CMIP6 multi time period  

Systematic benchmarking of each of the PMIP4-CMIP6 simulations will be a major aspect of the planned multi-15 

period approach. This will require the development of new data syntheses, assessments of the regional-scale 

consistency of different sources of information, as well as the use of new tools that simulate the palaeoclimate 

sensors explicitly. Forward modelling of specific palaeoenvironmental records provides a way to quantify 

uncertainties in the climate reconstructions used for benchmarking. The ensemble of metrics developed in 

PMIP3-CMIP5 (e.g. Harrison et al. 2013) will be expanded to include more process-oriented metrics. Multi-20 

period analyses will be particularly helpful for analyses of the hydrological cycle and the monsoons, including 

the how changes in land hydrology affect freshwater inputs to the ocean and water mass properties. Multi-period 

analyses will also help to address the role of vegetation feedbacks, particularly given the ambiguity as to whether 

these feedbacks are reproduced appropriately in simulations of the mid-Holocene.  

 25 

There are many aspects of the climate system which are difficult to measure directly, and which are therefore 

difficult to evaluate using traditional methods. The “emergent constraint” (e.g. Sherwood et al., 2014) concept, 

which is based on identifying a relationship to a more easily measurable variable, has been successfully used by 

the carbon-cycle and modern climate communities and holds great potential for the analysis of palaeoclimate 

simulations. This could be particularly valuable to examine the realism of cloud feedbacks in the simulations or 30 

the contribution of seasonal climate changes to hydrological budgets. 

 

Joint analysis of multiple paleoclimate simulations and climate reconstructions from different archives will be 

used to address the issue of climate sensitivity (sensu stricto) and earth-system sensitivity (PALEOSENS Project 

Members, 2012). The relationship between radiative forcing and global temperature is not straightforward, 35 

(Crucifix 2006, Yoshimori et al, 2011), partly because the nature of the forcing that drives the Earth to a cold 

climate differ from those that drive it into a warmer state. Nevertheless, estimates of climate sensitivity based on 

past climate states provide a starting point to establish the bounds of climate sensitivity to CO2 doubling 

(Hargreaves 2012). The multi-period approach will bring new constraints to this analysis. Additional constraints 
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can be obtained by using perturbed-physics experiments, in which different members differ by the values of the 

parameters (Annan et al., 2005, Yoshimori et al, 2011). The ‘perturbed forcing’ approach (Bounceur et el., 2015, 

Araya-Melo 2015), using sensitivity experiments carried out in PMIP4, could provide a way to chart the 

sensitivity of the climate system in a multi-dimensional space of forcing conditions.  

 5 

Multi-period analyses will also be useful to understand the relationship between mean climate state and modes of 

natural variability (e.g. Saint-Lu et al, 2015; Liu et al 2014). Future changes in modes of climate variability, such 

as ENSO, are poorly constrained (Christiansen et al., 2013) because model projections are insufficiently long to 

provide robust statistics for low frequency (multidecadal and longer) variations. Robust statistics of ENSO 

changes have been derived through critical analysis of high-resolution palaeo-records (Emile-Geay et al., 2016). 10 

The equilibrium palaeoclimate experiments in PMIP4-CMIP6 provide an opportunity to sample simulations for 

long enough, at least 250 years, to obtain robust estimates of ENSO changes (Stevenson et al, 2010) and 

analyses of multiple long simulations with different forcings should provide a better understanding of changes in 

ENSO behaviour (Zheng et al. 2008, An et al. 2014) and to determine whether state-of-the-art climate models 

underestimate low frequency noise (Laepple and Huybers, 2014). The PMIP Paleovariability Working Group 15 

will develop diagnostics for climate variability (Philips et al, 2014) to be applied to all the PMIP4-CMIP6 

simulations. Analyses will focus on how models reproduce the relationship between changes in seasonality and 

interannual variability (Emile-Geay et al. 2016), the diversity of El-Niño events (Capotondi et al. 2015; 

Karamperidou et al. 2015, Luan et al 2015), and the stability of teleconnections within the climate system (e.g. 

Gallant et al., 2013; Batehup et al., 2015).  20 

4.3 Interactions with other CMIP6 MIPs and the WCRP Grand Challenges 

Interactions between PMIP and other CMIP6 MIPs have mutual benefits: PMIP provides simulations of large 

climate changes that have occurred in the past and evaluation tools capitalizing on extensive data syntheses, 

while other MIPs will employ diagnostics and analyses which will be useful for analyzing the PMIP4 

experiments. This is the case of AerChemMIP for the aerosol forcings, SIMIP (Notz et al, 2016) and OMIP 25 

(Griffies et al, 2016) for the sea-ice and ocean components, LS3MIP (van den Hurk, 2016) for the land surface, 

C4MIP (Jones et al, 2016) for the carbon cycle, ISMIP for ice sheets, and CFMIP for the cloud forcing and 

feedback analyses. VolMIP (Zanchettin et al, 2016) and LUMIP (Lawrence et al, 2016) analytical tools will be 

relevant for the analyses of the impacts of volcanic and land use forcings in the past1000 simulation. The 

past1000 experiment also offers a long time series perturbed by natural forcings and observed land use changes 30 

for detection and attribution exercises and is therefore relevant for DAMIP (Gillett et al, 2016). We have ensured 

that all the outputs necessary for the application of common diagnostics across PMIP and other CMIP6 MIPs 

will be available (see section 4.4). 

 

PMIP has already developed strong links with several other CMIP6 MIPs (Table 3). CFMIP includes an 35 

idealized experiment mimicking the lgm simulation: AMIPminus4K is an atmosphere-only experiment in which 

the sea-surface temperatures are uniformly lowered by 4K is a mirror of the AMIP4K experiment in which sea-

surface temperatures are increased by 4K. These experiments allow investigations of cloud feedbacks and 

associated circulation changes in a colder versus a warmer world and this will assist in disentangling the 
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processes at work in the lgm climate. Some MIPs have designed experiments based on PMIP data, including 

VolMIP for the study of the impact of large past volcanic eruptions and ISMIP6 for the impact of the last 

interglacial climate on the Greenland ice sheet. Links with CFMIP and ISMIP6 mean that PMIP will also 

contribute to the WCRP Grand Challenges “Clouds, Circulation and Climate Sensitivity” and “Cryosphere and 

Sea Level” respectively. PMIP will also provide input to the WCRP Grand Challenge on “Regional Climate 5 

Information”, through a focus on evaluating the mechanisms of regional climate change in the past.  

 

Table 3: interactions of PMIP with other CMIP6 MIPs 

 

4.4 Implications: required variables for the PMIP4-CMIP6 database  10 

The list of variables required to analyse the PMIP4-CMIP6 palaeoclimate experiments 

(https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:wg:db:cmip6request) reflects plans for multi-time period 

analyses and for interactions with other CMIP6 MIPs. We have included pertinent variables from the data 

requests of other MIPs, including the CFMIP specific diagnostics on cloud forcing, land surface, snow, ocean, 

sea ice, aerosol, carbon cycle and ice sheet variables from LS3MIP, OMIP, SIMIP, AerChemMIP, C4MIP, and 15 

ISMIP6 respectively. Some of these variables are also required to diagnose how climate signals are recorded by 

palaeoclimatic sensors via models of e.g. tree growth (Li et al., 2014), vegetation dynamics (Prentice et al., 

2011) or marine micro-flora/fauna (e.g. planktonic foraminifera: Lombard et al, 2011, Kageyama et al, 2013). 

The only set of variables defined specifically for PMIP are those describing oxygen isotopes in the climate 

system. Isotopes are widely used for palaeoclimatic reconstruction and are explicitly simulated in several 20 

models.  

 

We have asked that average annual cycles of key variables are included in the PMIP4-CMIP6 data request for 

equilibrium simulations, as these proved exceptionally useful for analyses in PMIP3-CMIP5. Daily values of 

some variables are required for analyzing simulations with large changes in astronomical parameters 25 

(midHolocene and lig127k), as these changes result in modifications of the duration of each month of the year 

(Braconnot and Joussaume 1997). Modifications to month length are not usually taken into account in the model 

output post-treatment procedures. Daily values are also useful for running regional models. It is important to test 

the use of regional models for climate model projections at the regional scale. These models are also used to 

produce fine-scale palaeoclimate scenarios for use by the impact community, for example to study past climate 30 

impacts on biodiversity via ecological niche modelling. 

5. Conclusions  

PMIP4-CMIP6 simulations provide a framework to compare current and future anthropogenic climate change 

with past natural variations of the Earth’s climate. PMIP4-CMIP6 is a unique opportunity to simulate past 

climates with exactly the same models as used for simulations of the future. This approach is only valid if the 35 

model versions and implementation of boundary conditions are consistent for all periods, and if these boundary 

conditions are seamless for overlapping periods.  
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PMIP4-CMIP6 simulations are important in terms of model evaluation for climate states significantly different 

from the present and historical climates. We have chosen climatic periods well documented by paleoclimate and 

paleoenvironmental records, with climate and environmental changes relevant for the study and projections of 

future climate changes: the mid-Holocene, the Last Glacial Maximum, which are the periods over which PMIP 5 

has developed its largest experiments since its beginning, together with the last millennium before the industrial 

era (850-1850), the last interglacial and the mid-Pliocene Warm Periods.  

 

The PMIP community anticipates major benefits from analysis techniques developed by the other CMIP6 MIPs, 

in particular in terms of learning about the processes of past climate changes in response to forcings (e.g. 10 

greenhouse gases, astronomical parameters, ice sheet and sea level changes) as well as feedbacks (e.g. clouds, 

ocean, sea-ice). Collaborations have already been developed with e.g. CFMIP, ISMIP6 and VolMIP, but the 

hope is to build additional collaborations with other CMIP6 MIPs. PMIP4-CMIP6 has the potential to be 

mutually beneficial for the paleoclimate and present/future climate scientists to learn about natural large climate 

changes and the mechanisms at work in the climate system for climates states as different from today as future 15 

climate is projected to be. 

Data availability 

All data mentioned in the present manuscript can be found on the following web sites: 

- http://pmip4.lsce.ipsl.fr 

- http://geology.er.usgs.gov/egpsc/prism/7_pliomip2.html. 20 

They will also be provided via the ESGF system when this is set-up, along with forcing files for other CMIP6 

experiments. 
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TABLES 

Period Purpose  CMIP6 Priority 

Last millennium  

(past1000) 

850-1850 CE  

a) Evaluate the ability of models to capture observed variability 

on multi-decadal and longer time-scales.  

b) Determine what fraction of the variability is attributable to 

“external” forcing and what fraction reflects purely internal 

variability.  

c) Provide a longer-term perspective for detection and attribution 

studies 

Tier 1* 

Mid-Holocene 

(midHolocene) 

6 kyr ago 

a) Compare the model response to known orbital forcing changes 

and changes in greenhouse gas concentrations to paleodata, 

describing major temperature and hydrological changes.  

b) Relationships between changes in mean state and variability 

Tier 1* 

PMIP4-CMIP6 

entry card 

Last Glacial 

Maximum  

(lgm) 

21 kyr ago 

a) Compare the model response to ice-age boundary conditions 

with paleodata.  

b) Attempt to provide empirical constraints on global climate 

sensitivity.  

Tier 1* 

PMIP4-CMIP6 

entry card 

Last Interglacial 

(lastInterglacial) 

127 kyr ago 

a) Evaluate climate model for warm period in northern 

hemisphere and high sea-level stand 

b) Impacts of this climate on sea ice and ice sheets 

Tier 1* 

Mid-Pliocene 

Warm Period 

(midPlioceneEoi400) 

3.2 Ma ago 

a) Earth System response to a long term to CO2 forcing analogous 

to that of the modern 

b) Significance of CO2-induced polar amplification for the 

stability of the ice sheets, sea-ice and sea-level 

Tier 1* 

Table 1: Characteristics, purpose and CMIP6 priority of the five PMIP4-CMIP6 experiments. * All experiments can 

be run independently. It is not mandatory to perform all Tier 1 experiments to take part in PMIP4-CMIP6, but it is 

mandatory to run at least one of the PMIP4-CMIP6 entry cards. 5 
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Name of MIP Themes of interactions 

CF-MIP  dedicated common idealized sensitivity experiment to be run in aquaplanet set up, 

AMIPminus4K, to be co-analysed in CF-MIP and PMIP. 

ISMIP6 Assessment of the climate and cryosphere interactions and the sea level changes 

associated with large ice sheets. In particular, the lig127k simulation will be used to 

force ice sheet models in ISMIP6. Additional experiments co-designed by the 

PMIP and ISMIP groups are foreseen outside the CMIP6 exercise: transient 

interglacial experiments, with climate model output forcing an ice sheet model, and 

coupled climate-ice sheet experiments. 

OMIP Mutual assessment of the role of the ocean in low-frequency variability, e.g. multi-

decadal changes in ocean heat content or heat transport. Provide initial conditions 

for the ocean including long-term forcing history. 

SIMIP Assessment of role of sea-ice in climate changes 

AerChemMIP Assessment of role of aerosols in climate changes, very helpful since this is a new 

aspect in PMIP experiments for the midHolocene, last interglacial and LGM 

LS3MIP Assessment of role of land surface processes in climate changes. 

C4MIP Assessment of carbon-cycle evolution and feedbacks between sub-components of 

the Earth System. Evaluation of paleo reconstructions of carbon storage. 

LUMIP Analysis of climate changes associated with Land Use changes (past1000 

experiment) 

VolMIP Analysis of specific volcanic events very useful for critical analysis of past1000 

simulations. VolMIP would systematically assess uncertainties in the climate 

response to volcanic forcing, whereas past1000 simulations describe the climate 

response to volcanic forcing in long transient simulations where related 

uncertainties are due to chosen input data for volcanic forcing: mutual assessment 

of forced response. 

DAMIP past1000 simulations provide long-term reference background including natural 

climate variability for detection and attribution. 
Table 3: interactions of PMIP with other CMIP6 MIPs 5 
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FIGURE CAPTIONS 5 

 

Figure 1: Context of the PMIP4 experiments (from left to right: MPWP, Mid-Pliocene Warm Period; LIG, last 

interglacial; LGM, last glacial maximum; MH, mid-Holocene; LM, last millennium; H, CMIP6 historical 

simulation): (a)-(d) insolation anomalies (differences from 1950 CE), for July at 65°N, calculated using the 

programs of Laskar et al. (2004, panel (a)) and Berger (1978, panels (b)-(d)); (e) δ18O (magenta, Lisiecki and 10 

Raymo, 2005, scale at left), and sea level (blue line, Rohling et al., 2014; blue shading, a density plot of eleven 

Mid-Pliocene sea level estimates (Dowsett and Cronin 1990; Wardlaw and Quinn, 1991; Krantz, 1991; Raymo et 

al., 2009; Dwyer and Chandler, 2009; Naish and Wilson, 2009; Masson-Delmotte et al., 2013; Rohling et al., 

2014; Dowsett et al., 2016) scale at right); (f) and (g) δ18O (magenta, Lisiecki and Raymo, 2005, δ18O scale at 

left), and sea level (blue dots, with light-blue 2.5, 25, 75 and 97.5 percentile bootstrap confidence intervals,  15 

Spratt and Lisiecki, 2015; blue rectangle, LIG high-stand range, Dutton et al., 2015; dark blue lines, Lambeck et 

al., 2014, sea-level scale at right on panel (g)), (h) sea level (Kopp, et al., 2016, scale at right); (i) CO2 for the 

interval 3.0-3.3 Ma shown as a density plot of eight Mid-Pliocene estimates (Raymo et al., 1996; Stap et al., 

2016; Pagani et al., 2010; Seki et al., 2010; Tripati et al., 2009; Bartoli et al., 2011; Seki et al., 2010; Kurschner 

et al., 1996); (j) and (k) CO2 measurements (Bereiter et al., 2015, scale at left); (l) CO2 measurements (Schmidt 20 

et al, 2011, scale at right); (m) and (n) CH4 measurements (Loulergue et al., 2008, scale at left); (o) CH4 

measurements (Schmidt et al, 2011, scale at right); (p) volcanic radiative forcing (Schmidt et al., 2012, scale at 

right); (q) total solar irradiance (Schmidt et al., 2012, scale at right). 

 

Figure 2.  Data-model comparisons in PMIP2 and CMIP5/PMIP3:  (a) Land-ocean contrast in past, present and 25 

projected future climates.  The black dots are the simulated long-term mean differences (experiment – piControl) 

in the relative warming/cooling over global land and global ocean.  The red crosses show simulated changes 

where the model output has been sampled only at the locations for which there are temperature reconstructions 

for the lgm, midHolocene and historical (post-1850 CE) CMIP5 simulations.  Area averages of palaeoclimate 

data are shown by bold blue crosses, with reconstruction uncertainties indicated by the finer lines.  The 30 

regression line (magenta) shows that land-ocean contrasts are maintained across different climate states and are 

also consistent with palaeoclimatic data.  (b) Boxplots of reconstructions based on fossil-pollen data (gray, 

Bartlein et al. 2011) and simulations (at the locations of the data) for the difference in mean annual precipitation 

(MAP) for the mid-Holocene (relative to present) in northern Africa (20°W-30°E; 5-30°N).  The comparison 

shows that although all models simulated wetter-that-present conditions in northern Africa for the mid-Holocene, 35 

they systematically underestimated the magnitude of the precipitation difference. 

 

Figure 3: Color lines: temperatures anomalies (w.r.t. the 1500-1850 CE average) simulated by PMIP3-CMIP5 

models for the last millennium and historical periods, averaged for the northern (l.h.s) and southern (r.h.s) 

hemisphere. Grey shading: uncertainty envelope of available reconstructions. All series are filtered using a 31-40 

point moving average filter. Adapted from Fernandez-Donado, 2015. 

 

Figure 4: Figure 5.6 from Chapter 5 of the IPCC AR5 WGI report (Masson-Delmotte et al., 2013, page 408). 

Changes in surface temperature for the Last Interglacial (LIG) as reconstructed from data and simulated by an 

ensemble of climate model experiments in response to orbital and well-mixed greenhouse gas (WMGHG) 45 

forcings. (a) Proxy data syntheses of annual surface temperature anomalies as published by Turney and Jones 

(2010) and McKay et al. (2011). McKay et al., (2011) calculated an annual anomaly for each record as the 

average sea surface temperature (SST) of the 5-kyr period centred on the warmest temperature between 135 ka 

and 118 ka and then subtracting the average SST of the late Holocene (last 5 kyr). Turney and Jones (2010) 

calculated the annual temperature anomalies relative to 1961–1990 by averaging the LIG temperature estimates 50 
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across the isotopic plateau in the marine and ice records and the period of maximum warmth in the terrestrial 5 

records (assuming globally synchronous terrestrial warmth). (b) Multi-model average of annual surface air 

temperature anomalies simulated for the LIG computed with respect to preindustrial. The results for the LIG are 

obtained from 16 simulations for 128 to 125 ka conducted by 13 modelling groups (Lunt et al., 2013). (c) 

Seasonal SST anomalies. Multi-model zonal averages are shown as solid line with shaded bands indicating 2 

standard deviations. Plotted values are the respective seasonal multi-mean global average. Symbols are 10 

individual proxy records of seasonal SST anomalies from McKay et al. (2011). (d) Seasonal terrestrial surface 

temperature anomalies (SAT). As in (c) but with symbols representing terrestrial proxy records as compiled from 

published literature (Table 5.A.5). Observed seasonal terrestrial anomalies larger than 10°C or less than –6°C are 

not shown. In (c) and (d) JJA denotes June – July – August and DJF December – January – February, 

respectively. 15 

 

Figure 5: Figure 1 in Box 5.1 from Chapter 5 of the IPCC AR5 WGI report (Masson-Delmotte et al., 2013, page 

397). Comparison of data and multi-model mean (MMM) simulations, for four periods of time, showing (a) sea 

surface temperature (SST) anomalies, (b) zonally averaged SST anomalies, (c) zonally averaged global (green) 

and land (grey) surface air temperature (SAT) anomalies and (d) land SAT anomalies. The time periods are 20 

2081–2100 for the Representative Concentration Pathway (RCP) 8.5 (top row), Last Glacial Maximum (LGM, 

second row), mid-Pliocene Warm Period (MPWP, third row) and Early Eocene Climatic Optimum (EECO, 

bottom row). Model temperature anomalies are calculated relative to the pre-industrial value of each model in 

the ensemble prior to calculating the MMM anomaly (a, d; colour shading). Zonal MMM gradients (b, c) are 

plotted with a shaded band indicating 2 standard deviations. Site specific temperature anomalies estimated from 25 

proxy data are calculated relative to present site temperatures and are plotted (a, d) using the same colour scale 

as the model data, and a circle-size scaled to estimates of confidence. Proxy data compilations for the LGM are 

from Multiproxy Approach for the Reconstruction of the Glacial Ocean surface (MARGO) Project Members 

(2009) and Bartlein et al. (2011), for the MPWP are from Dowsett et al. (2012), Salzmann et al. (2008) and 

Haywood et al. (2013) and for the EECO are from Hollis et al. (2012) and Lunt et al. (2012). Model ensemble 30 

simulations for 2081–2100 are from the CMIP5 ensemble using RCP 8.5, for the LGM are seven Paleoclimate 

Modelling Intercomparison Project Phase III (PMIP3) and Coupled Model Intercomparison Project Phase 5 

(CMIP5) models, for the Pliocene are from Haywood et al., (2013), and for the EECO are after Lunt et al. 

(2012). [ Note: permission has been sought to use the third line of this figure only (i.e. the MPWP results). Until 

this permission is received, we follow the IPCC rules for using the figures from the fifth assessment report. ] 35 

 

Figure 6: Changes in boundary conditions related to changes in ice sheets for the midPliocene-eoi400 (top) and 

lgm (middle: ICE-6G_C and bottom: GLAC-1D) experiments. Coastlines for palaeo-period shown as brown 

contours. Ice sheet boundaries for each period shown as red contour. Bright shading: changes in altitude over 

regions covered by ice sheets during the considered palaeo-period. Faded shading: changes in altitude over ice-40 

free regions. 

 

Figure 7: Maps of dust deposition (g m-2 a-1) simulated with the Community Earth System Model for the a. PI 

(Albani et al., 2016), b. Mid-Holocene (Albani et al., 2015), and c. LGM (Albani et al., 2014). Maps of dust 

deposition (g m-2 a-1) for the LGM d. simulated with the Hadley Centre Global Environment Model 2-45 

Atmosphere (Hopcroft et al, 2015), and reconstructed from a global interpolation of paleodust data (Lambert et 

al., 2015).   
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